

RDMT 1604 M0SN LT 30

Cat. Nr. M0001881

Lamina Technologies Marketing team is delighted to offer a new addition to our Milling Line – RDMT 1604 M0SN LT 30.

Description

- · Reinforced positive cutting edge for universal applications
- ISO round insert for Roughing Milling

Application Area

This new developed insert is completing the Lamina Milling line with the latest and most modern technics in Milling. The positive rake angle preceded by a chamfer maintains a stable machining, even for machines without ball screws or not powerful electric motors.

The insert can be mounted on any type of end mills or shell mills and is suitable for universal applications including:

- Pocket milling, shoulder milling, facing, plunging, and ramping down
- Dry & wet machining (according to each material's recommendation)

Main Advantages

- · Fits standard cutters available in the market
- · Low cost per edge, with unlimited indexes
- Excellent toughness & wear resistance
- Follows the "Multi-Mat™" Concept

Main Competitors

• ISO types of RDHX 1604, RDMT 1604 and RPMT 1604

RDMT 1604 M0SN LT 30

M	Material Creen		VDI	Material Examples*	Coolant	Hardness	d.o.c [mm]		Feed [mm/rev]		V _c [m/min]		Optimal cutting conditions		
Material Group		N°	Group				min	max	min	max	min	max	d.o.c.	feed	Vc
Steel	Non-alloyed	1	1	C35, Ck45, 1020,	<u>&</u>	125 HB	0.4	5.3	0.40	0.90	190	350	1.9	0.80	300
			2	1045, 1060,		190 HB	0.4	5.3	0.40	0.90	190	300	1.9	0.80	250
			3	28Mn6		250 HB	0.4	4.0	0.40	0.70	190	260	1.9	0.70	220
	Low alloyed	2	6	400-Ma4 C450 0		180 HB	0.4	5.3	0.30	0.90	150	240	1.9	0.80	210
			4,6	42CrMo4, St50-2, Ck60, 4140, 4340,		230 HB	0.4	4.0	0.30	0.80	150	210	1.9	0.70	190
			5,7	100Cr6		280 HB	0.4	2.7	0.30	0.70	130	190	1.9	0.70	150
			8			350 HB	0.4	1.9	0.30	0.70	130	170	1.3	0.70	130
	High alloyed	3	10	V400×MaVE 1		220 HB	0.4	2.7	0.30	0.80	90	150	1.3	0.70	130
			10	X40CrMoV5-1, H13, M42, D3,		280 HB	0.4	2.7	0.30	0.70	90	130	1.3	0.70	120
			11	S6-5-2, 12Ni19		320 HB	0.4	1.9	0.30	0.70	60	110	1.3	0.70	100
			11	,		350 HB	0.4	1.9	0.30	0.60	60	90	1.3	0.60	90
teel	Austenitic	4	14	304, 316, 316L,		180 HB	0.4	4.0	0.30	0.60	190	250	3.4	0.40	200
			14	X5CrNi18-9		240 HB	0.4	4.0	0.30	0.60	190	250	3.4	0.40	170
S S	Duplex	5	14	X2CrNiN23-4,	\Diamond	-	0.4	4.0	0.20	0.50	70	150	3.4	0.30	90
Stainless Steel			14	S31500		-	0.4	4.0	0.20	0.50	70	150	3.4	0.30	90
Sta	Ferritic & Martensitic	6	12	410, X6Cr17,		200 HB	0.4	2.7	0.20	0.50	150	210	1.3	0.70	150
			13	17-4 PH, 430		42 HRc	0.4	1.9	0.20	0.50	70	150	1.3	0.60	80
Cast Iron	Grey	7	15	GG20, GG40,	Coolem	150 HB	0.4	4.0	0.30	1.10	170	300	2.7	1.10	200
			15	EN-GJL-250,		200 HB	0.4	4.0	0.30	1.10	170	250	2.7	0.90	170
			16	No30B		250 HB	0.4	4.0	0.30	1.10	150	210	2.7	0.80	150
	Malleable & Nodular	8	17,19	GGG40, GGG70,		150 HB	0.4	3.4	0.30	0.80	120	210	1.9	0.70	210
			17,19	50005		200 HB	0.4	3.4	0.30	0.80	120	170	1.9	0.70	170
			18,20			250 HB	0.4	3.4	0.30	0.80	120	150	1.9	0.80	150
)ys	Ni, Fe & Co based	9	33	Inconel 718,	Coolant	250 HB	0.4	5.3	0.20	0.50	25	35	4.0	0.30	30
High Temp.Alloys			34	Monel 400,		350 HB	0.4	5.3	0.20	0.50	28	45	4.0	0.30	40
			31,32	Hastelloy C		240 HB	0.4	5.3	0.20	0.50	40	60	4.0	0.30	55
gh T	Ti based	10	36	TiAl6V4,		-	0.4	5.3	0.30	0.50	35	60	2.7	0.40	50
Ξ			37	R54520		-	0.4	5.3	0.30	0.40	28	40	2.7	0.40	35
i.	Steel		38	X100CrMo13,	☆	45 HRc	0.4	1.3	0.20	0.50	40	80	0.6	0.50	60
Hardened Mat.			38	440C,		50 HRc	0.4	1.0	0.20	0.50	40	70	0.6	0.50	50
		11	38	G-X260NiCr42,		55 HRc	0.4	0.6	0.20	0.40	40	60	0.6	0.40	40
	Chilled Cast Iron		40	Ni-Hard 2,	Coolant	400 HB	0.4	1.3	0.20	0.50	40	60	0.6	0.50	50
	White Cast Iron		41	G-X260Cr27		55 HRc	0.4	0.6	0.20	0.50	30	60	0.6	0.50	30
¥	AI (>8%Si)	12	25	AlSi12	δ	130 HB	0.4	5.3	0.40	1.10	200	400	2.7	0.50	350

This cutting conditions table is showing initial recommendations but, the insert can perform in a wider range.